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Abstract 

 This work develops Pelican Mayfly Algorithm (PMA) to minimize CNN high computational 

requirement to the minimum by the selection of its optimum parameters. PMA was designed by 

applying pelican exploration model to improve the attraction process of MA as deterministic 

process and to establish a balance between exploration and exploitation in MA. PMA was applied 

to optimize CNN hyper-parameters to develop hybridized CNN-PMA, and CNN-PMA was applied 

to South Western Nigeria electrical network for detection and classification of electrical faults. 

MAPE, MNE, RMSE, SNR and PSNR and confusion matrix were used as performance metrics. 

PMA achieved the optimum CNN architecture as follows: 1-convolutional-layer, filter size of 6 x 

6, number of filters per layer is 128 and 256-batch-size with recognition-rate of 99.53%. PMA 

selected optimal parameters of CNN timely and accurately. CNN-PMA performed better in 

detection and classification of faults in SWN electrical network compared to CNN, CNN-MA and 

some other selected models. 

 

Key words: Convolutional Neural Network (CNN), Pelican Mayfly Algorithm, Hyper-parameters. 

 

1 INTRODUCTION 

Convolutional Neural Network is a competent Artificial Intelligence (AI) algorithm in computer 

system for specific application such as: expert system, natural language processing, image 

recognition, machine vision as well as speech recognition (Tang et al., 2019). CNN is a special 

type ANN that has convolutional layers in replacement of linear map by ANN. Convolutional 

layers make use convolutional filters (Mozo et al., 2018). CNN belong to a class of feed-forward 

neural network which has convolutional operation and deep structure. CNN multi-layer neural 

network consists of many convolutional layers as well as pooling layers alternately together with 

one or more full connection layers connected for classification of image features generated by the 

previous layers (Chen et al., 2018). CNN has important advantages in processing of large amount 

of data with less computational cost. Hence, it is used in solving various engineering problems 

(Jing et al., 2017: Bracale et al., 2017). CNN has five main parts, they are: input layer, 

convolutional layer, pooling layer, full connection layer and output layer (Lu et al., 2019: Samet 

et al., 2021: Chen et al., 2018: Bukhari et al., 2020: Afrasiabi et al., 2019: Pan et al., 2019: Hatata 

et al., 2022).  
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Although, CNN has better opportunity of processing large data with small computational cost 

(Chen et al., 2018: Jing et al., 2017). However, CNN possess high computational requirement and 

has difficulty with small data (Zhao et al. (2020). In view of these, application of strong 

optimization technique reduces computational requirement of CNN by selection of its optimum 

hyper-parameters.  

Optimization is a technique in AI, applied to obtain the best solution among different possible 

solutions under some constraint functions (Yang and Karamanoglu, 2016). Ogundoyin and Kamil 

(2021) categorized optimization techniques as: deterministic and stochastic. Several optimization 

techniques had been developed by different researchers and applied in different fields, for 

example: Kennedy and Eberthart, 1995 developed PSO, Geem and Kim, 2001 developed Harmony 

search, Yang, 2008 developed Firefly Algorithm and Storn and Price, 1997 developed Differential 

Evolution. 

Recently, Mayfly Algorithm (MA) optimization was developed by Zervoudakis and Tsafarakis 

(2020). Its principle of operation is rooted in the mayflies social and mating process, however there 

is unbalance in both exploration and exploitation of MA. Similarly, Pelican Optimization 

Algorithm (POA) was developed by Trojovsky and Dehghani (2022). POA modeled the strategy 

and behavior of pelicans during hunting (Marchant, 1990). Their behaviors and strategies when 

hunting made them skilled hunters, and the design of POA replicated the modeling of pelicans’ 

strategy (Perrins and Middleton, 1985: Anderson, 1991).  

Despite the good performances of existing optimization techniques, development of new methods 

to achieve better results in term of accuracy, precision and Signal to noise ratio is on increase. 

Beside these, optimization problems in different fields require different approach because of their 

wide evolvement and enlargement. New optimization algorithms need to be developed from time 

to time to cope with the advancement in the field of computational intelligence optimization. In 

addition, according to ‘No Free Lunch’ (NFL) theorem: no single optimization algorithm could 

solve optimization problem in different fields (Wolpert and Macready, 1997). Hence, there is need 

for modification, enhancement or hybridization of existing methods or development of new 

methods for a better performance. In view of these, a new optimization method: PMA that can 

select optimum parameters of CNN is developed by combining MA and POA optimization 

techniques. 

The main contribution of this paper is to carry out hybridization of Mayfly and Pelican 

optimization algorithms in order to develop a novel optimization technique that can select optimal 

hyper parameters of CNN. The main contributions of this work are thus summarized as follows:  

i) development of PMA,  ii) development of CNN-PMA, iii) simulation of CNN-PMA, iv) 

detection of electrical faults and fault classification in 330kV electrical network and synchronous 

generator (SG) using CNN-PMA model and  v) the performance evaluation of CNN-PMA 

compared with CNN-MA and CNN.  

The remainders of this work are arranged as follows: Section Two presents the problem 

formulations while section Three shows the proposed hybridized model. Section Four discusses 

and presents results obtained while section Five concludes the work.  

2 PROBLEM FORMULATION 

Mathematical modeling for the proposed algorithms is presented in this section.  

2.1 Mayflies Algorithms 
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International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 86 

Mayflies survive to adults after hatching, the position of each mayfly indicated a potential solution 

to a problem in the search space. Optimization algorithm development is as follows: two sets of 

mayflies are produced randomly indicating male and female populations in 𝑑 −dimensional 

vectors: 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4 … … … 𝑥𝑑) and 𝑦 = (𝑦1, 𝑦2, 𝑦3, 𝑦4, … … … 𝑦𝑑) respectively. Their 

performances are tested on the predefined objective function 𝑓(𝑥). Their velocity  𝑣 = 

(𝑣1, 𝑣2, 𝑣3, 𝑣4 … … . 𝑣𝑑) is the change of position of mayfly. The direction of each mayfly is 

determined by individual flying experiences known as personal best position (𝑝𝑏𝑒𝑠𝑡) as well as 

the best position gained by any other mayflies of the swarm known as global best (𝑔𝑏𝑒𝑠𝑡). 

Assuming 𝑥𝑖 denotes the initial position of mayfly ‘𝑖’ at time 𝑠𝑡𝑒𝑝 𝑡, if there is change in the 

position by a velocity 𝑣𝑖
𝑡+1 to the new position as stated in Equation 1 (Zervoudakis and Tsafarakis, 

2020). 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 +  𝑣𝑖
𝑡+1 + 𝑣𝑖

𝑡+2 + 𝑣𝑖
𝑡+3+. . . 𝑣𝑖

𝑡+𝑛         1 

Male mayflies always perform nuptial dance a few meters above water as well as moving 

constantly with low speeds. Then, male mayfly velocity is calculated using Equation 2 

(Zervoudakis and Tsafarakis, 2020).  

 𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝛽𝑟𝑝
2
(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗

𝑡 ) + 𝑎2𝑒−𝛽𝑟𝑔
2
(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗

𝑡 )     2 

where 𝑣𝑖𝑗
𝑡  is the velocity of mayfly 𝑖 in dimension 𝑗 = 1,2,3 … … . 𝑛 at 𝑠𝑡𝑒𝑝 𝑡 

𝑥𝑖𝑗
𝑡  is the position of mayfly in dimension 𝑗 at 𝑠𝑡𝑒𝑝 𝑡 

𝛽 is a fixed visibility coefficient used to limit mayfly visibility to others 

𝑟𝑝 is the Cartesian distance between 𝑥𝑖 𝑎𝑛𝑑 𝑝𝑏𝑒𝑠𝑡 

𝑟𝑔 is the Cartesian distance between 𝑥𝑖  𝑎𝑛𝑑 𝑔𝑏𝑒𝑠𝑡 

𝑎1 𝑎𝑛𝑑 𝑎2 are positive attraction constant used to scale the contribution of the cognitive 

and social component respectively.  

Best female in the swarm is attracted to the best male why second-best female to second 

best male and so on. Then, their velocities are calculated as: 

 𝑣𝑖𝑗
𝑡+1 =   {

𝑣𝑖𝑗
𝑡 +  𝑎2𝑒−𝛽𝑟𝑚𝑓

2

(𝑥𝑖𝑗
𝑡 − 𝑦𝑖𝑗

𝑡 ) 𝑖𝑓 𝑓(𝑦𝑖) > 𝑓(𝑥𝑖)

𝑣𝑖𝑗
𝑡 +  𝑓𝑙 ∗ 𝑟 𝑖𝑓 𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖)

       3 

𝑣𝑖𝑗
𝑡+1 is the velocity of female mayfly𝑖 in dimension 𝑗 = 1, … … 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 

𝑦𝑖𝑗
𝑡  is the position of female mayfly 𝑖 in dimension 𝑗 = 1, … … 𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡 

𝑎2 is the positive attraction constant, 𝛽is the fixed visibility coefficient,  

𝑟𝑚𝑓 is the Cartesian distance between male and female mayflies, 

𝑓𝑙 is a random walk coefficient used when a female is not attracted by a male and 

𝑟 is a random value in range (−1, 1) 

The gravity coefficient  𝑔 helps in achieving a sufficient balance between exploration and 

exploitation. Hence, male mayfly velocity  𝑖 in Equation 2 is modified as: 

𝑣𝑖𝑗
𝑡+1  =      𝑔 ∗ 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝛽𝑟𝑝
2
(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗

𝑡 ) + 𝑎2𝑒−𝛽𝑟𝑔
2
(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗

𝑡 )      4 

And female mayfly 𝑖 velocity in Equation 3 is modified as: 

𝑣𝑖𝑗
𝑡+1  =  {

𝑔 ∗  𝑣𝑖𝑗
𝑡 +  𝑎2𝑒−𝛽𝑟𝑚𝑓

2

(𝑥𝑖𝑗
𝑡 − 𝑦𝑖𝑗

𝑡 ) 𝑖𝑓 𝑓(𝑦𝑖) > 𝑓(𝑥𝑖)

𝑔 ∗  𝑣𝑖𝑗
𝑡 +  𝑓𝑙 ∗ 𝑟 𝑖𝑓 𝑓(𝑦𝑖) ≤ 𝑓(𝑥𝑖)

       5 

Gravity coefficient  𝑔 is a constant in the range of (0, 1), 
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 𝑔       =                    𝑔𝑚𝑎𝑥 − 
𝑔𝑚𝑎𝑥− 𝑔𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 𝑥  𝑖𝑡𝑒𝑟         6 

Where  𝑔𝑚𝑎𝑥,  𝑔𝑚𝑖𝑛  are maximum and minimum values of the gravity, 𝑖𝑡𝑒𝑟. is the latest iteration 

of the algorithm, and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations. 

2.2 The Pelican Optimization Algorithm  

Details mathematical formulations of POA are presented in Trojovsky and Dehghani, 2022. Each 

population member indicates candidate solution, and the optimization problem variables were 

according to their position within the space. At starting stage, Equation 7 indicated population 

members at the lower and upper bound of the problem (Trojovsky and Dehghani, 2022). 

𝑥𝑖,𝑗  =  𝑙𝑗 +  𝑟𝑎𝑛𝑑 ∙ (𝑢𝑗 − 𝑙𝑗),    𝑖 = 1, 2, … 𝑁, 𝑗 = 1, 2, … 𝑚    7 

Where 𝑥𝑖,𝑗 is the value of the 𝑗𝑡ℎ variable specified by the 𝑖𝑡ℎ candidate solution, 

 𝑁 is the number of population member, 𝑚 is the number of problem variable, 

  𝑟𝑎𝑛𝑑 is a random number in interval (0, 1), 𝑙𝑗 is the 𝑗𝑡ℎ lower bound, and 𝑢𝑗  is the 𝑗𝑡ℎ 

 upper bound of problem variables.   

Hunting strategy is modeled in two stages; 

 (i)  Moving toward prey (exploration phase) (phase 1) 

 (ii) Winging on the water surface (exploitation phase) (phase 2) 

 In exploration phase, the pelicans locate the prey and move towards it. This concept is 

mathematically simulated in Equation 8 

 𝑥𝑖,𝑗
𝑝1  =   {

𝑥𝑖,𝑗 +  𝑟𝑎𝑛𝑑 ∙ (𝑝𝑗 −  𝐼 ∙  𝑥𝑖,𝑗), 𝐹𝑝 < 𝐹𝑖 ;

𝑥𝑖,𝑗 +  𝑟𝑎𝑛𝑑 ∙ (𝑥𝑖,𝑗 −  𝑝𝑗), 𝑒𝑙𝑠𝑒
        8 

Where 𝑥𝑖,𝑗
𝑝1 is the new status of the 𝑖𝑡ℎ pelican in the 𝑗𝑡ℎ dimension based on phase 1, 

 𝑝𝑗 is the location of prey in the 𝑗𝑡ℎ dimension, and 𝐹𝑝 is its objective function value. 

 𝐼 is a number that can be randomly equal to 1 or 2, and randomly selected for each iteration 

 and for each member.  

 In exploitation phase, after the pelicans reach the surface of the water, they spread their 

wings and move the fish to a shallow area for collection. The behavior of pelicans during hunting 

is simulated mathematically in Equation 9. 

 𝑥𝑖,𝑗
𝑝2       =     𝑥𝑖,𝑗 +  𝑅 ∙ (1 −

𝑡

𝑇
) ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) ∙  𝑥𝑖,𝑗       9 

Where 𝑥𝑖,𝑗
𝑝2 is the current status of the 𝑖𝑡ℎ pelican in the 𝑗𝑡ℎ dimension based on phase 2, 

 𝑅 is a constant equal to 0.2,  𝑅 ∙ (1 −  
𝑡

𝑇
) is the neighborhood radius of 𝑥𝑖,𝑗, 

 𝑡 is the iteration counter, and 𝑇 is the maximum number of iterations.  

Hence, POA converges to solutions closer to the global optimal based and effectively updating to 

accept or reject the new pelican position.  

3 Hybridization of MA and POA (PMA) 

 Pelican Mayfly Algorithm (PMA) is modeled by applying pelican exploration strategy to  

design the attraction process of standard Mayfly algorithm. The application of pelican’s 

exploration and exploitation behaviors to MA established balance between exploration and 

exploitation in MA. PMA is applied for optimization of CNN hyper parameters such as: number 

of layers, number of filters in each layer, filter size and batch size. The Pelican Mayfly Algorithm 

(PMA) is formulated using Equation 10 to model the attraction process of male and female 
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mayflies as a deterministic process instead of the random process for selection of hyper parameters 

in the existing mayfly. The updated velocities and solution of male and female using Pelican 

Exploration Phase is expressed in Equation 10. 

If 𝐹𝑃 < 𝑓(𝑥). 

𝑣𝑠𝑡𝑑 = 𝑥𝑠𝑡𝑑 + 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑚𝑒𝑎𝑛 − 𝐼 ∗ 𝑥𝑠𝑡𝑑) where 𝑟𝑎𝑛𝑑𝜖(0,1)  

else,            10 

𝑣𝑠𝑡𝑑 = 𝑥𝑠𝑡𝑑 + 𝑟𝑎𝑛𝑑 ∗ (𝑥𝑠𝑡𝑑 − 𝑥𝑚𝑒𝑎𝑛) where𝑟𝑎𝑛𝑑𝜖(0,1)  

end    

where 𝒙𝒔𝒕𝒅 and 𝒙𝒎𝒆𝒂𝒏 are the search space limits for the fitness function, I is a random 

number between 1 and 2. 𝐹𝑃 is its new objective function value, 𝑓(𝑥). is the initial objective 

function value of the males and females mayflies. Given the existing Mayfly Algorithm velocity 

updates as in Equation 11 

𝑣𝑖𝑗
𝑡+1  = 𝑔 ∗ 𝑣𝑖𝑗

𝑡 + 𝑎1𝑒−𝛽𝑟𝑝
2
[𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗

𝑡 ] +  𝑎2𝑒−𝛽𝑟𝑔
2
[𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗

𝑡 ]          11 

where 𝜷 is a fixed visibility coefficient which is used to limit a mayfly’s visibility to others, 

 𝑟𝑝   is the Cartesian distance between 𝒙𝒊 and 𝑝𝑏𝑒𝑠𝑡𝑖𝑗 and, 

 𝑟𝑔 is the Cartesian distance between 𝒙𝒊 and  𝑔𝑏𝑒𝑠𝑡𝑗.  

Challenges of imbalance between exploration and exploitation experienced by exiting mayfly 

algorithm were resolved in this study by modifying the velocity of the female with application of 

Pelican Exploitation Phase. Mathematically, Equation 12 expressed the Pelican male and female 

position to converge to a better solution.  

 𝑥𝑖𝑗
𝑃 = 𝑥𝑖𝑗

𝑡 + 𝑅. (1 −
𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑖𝑗

𝑡            12 

where 𝑥𝑖𝑗
𝑃 is the latest status position of the ith pelican in the jth dimension based on pelican 

exploitation phase, R is a constant, which is equal to 0.2, 

 𝑅. (1 −
𝑡

𝑇
) is the neighbourhood radius of 𝑥𝑖𝑗

𝑡 

 𝑡 is the iteration counter, and 

 𝑇 is the maximum number of iterations.  

 The coefficient 𝑅. (1 −
𝑡

𝑇
) indicated the radius of the neighbourhood of the population 

members of male and female mayfly and improve exploitation power of PMA. PMA convergence 

to solutions closer to the global optimal based on the usage concept as expressed in Equation 13. 

 𝑣𝑖𝑗
𝑡+1 = 𝑔 ∗ 𝑣𝑖𝑗

𝑡 +  𝑎1𝑒−𝛽𝑟𝑝
2
[𝑝𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑥𝑖𝑗

𝑝 ] +  𝑎2𝑒−𝛽𝑟𝑔
2
[𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑖𝑗

𝑝 ]         13 

The algorithmic steps for the PMA technique used to achieve optimized CNN parameters 

selection is described in Algorithm 1 The output from the CNN parameters selection is the most 

significant balanced parameters used by CNN for feature extraction and classification.  

 

Algorithm 1: Pelican May-Fly Algorithm 

Step 1: Assign initial values of the male mayfly population   𝒙𝒊𝒋  
𝟎 (i=1,2, 3,4 …, N) and 

velocities 𝒗𝒊𝒋
𝟎  (𝑖 = 1,2,3,4, … … . 𝑉), 

Assign initial values of the female mayfly population 𝒚𝒊𝒋
𝟎   (i=1, 2,3,4 …, M), 

𝑴𝒂𝒙𝒊𝒕𝒆𝒓 =max.no of iteration 

Step 2: Set iteration t = 1 
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Step 3: Compute the objective function values of males and females’ mayflies as 𝒇(𝒙) =
𝒇(𝒙𝒊

𝒕) . where 𝒇: 𝑹𝒏 → 𝑹 is the objective function which evaluates the quality of a solution 

𝒇(𝒙)           = ∑ [∑(𝒙𝒊,𝒌−𝟏 − 𝒙𝒊,𝒌)
𝟐

𝒏

𝒊=𝟏

]

𝒎

𝒌=𝟐

 

Where  𝒙𝒊
𝒕 denote the CNN parameters at i =1,2,3,4 …, n and k =2,3, 4,5…, m 

Step 4:  Locate the 𝑃𝑏𝑒𝑠𝑡 for each male and female as 𝑷𝒃𝒆𝒔𝒕,𝒊𝑫
𝒕 =  𝒙𝒊

𝒕 and G𝑏𝑒𝑠𝑡 as 𝑮𝒃𝒆𝒔𝒕,𝒊𝑫
. =

 𝒎𝒊𝒏{𝑷𝒃𝒆𝒔𝒕,𝒊𝑫
𝒕 } 

Step 5: Determine gravity coefficient: The gravity coefficient 𝑔 may be a fixed value in the 

range of [-1, 1], or it may be gradually reduced over the iterations, making the algorithm to 

achieve few worst and best specific areas as displayed in equation     

𝒈 = 𝒈𝒔𝒕𝒅 −
(𝒈𝒔𝒕𝒅 − 𝒈𝑚𝑒𝑎𝑛) ∗ (𝒊𝒕𝒆𝒓𝒎𝒂𝒙 − 𝒊𝒕𝒆𝒓 + 𝟏)

𝒊𝒕𝒆𝒓𝒎𝒂𝒙
− 𝒊𝒕𝒆𝒓 

where 𝒈𝒔𝒕𝒅 and 𝒈mean are the standard deviation and mean values respectively, 𝒊𝒕𝒆𝒓 is the 

initial iteration of the algorithm and 𝒊𝒕𝒆𝒓𝒎𝒂𝒙 is the maximum number of iterations. 

  

Step 6: Modify velocities and solution of males and females’ mayflies 

Using Pelican Exploration Phase (𝒙𝒊) 

If 𝑭𝑷 < 𝒇(𝒙). 

𝒗𝒔𝒕𝒅 = 𝒙𝒔𝒕𝒅 + 𝒓𝒂𝒏𝒅 ∗ (𝒙𝒎𝒆𝒂𝒏 − 𝑰 ∗ 𝒙𝒔𝒕𝒅) 𝐰𝐡𝐞𝐫𝐞 𝒓𝒂𝒏𝒅 𝝐(𝟎, 𝟏)  

else 

𝒗𝒔𝒕𝒅 = 𝒙𝒔𝒕𝒅 + 𝒓𝒂𝒏𝒅 ∗ (𝒙𝒔𝒕𝒅 − 𝒙𝒎𝒆𝒂𝒏) 𝐰𝐡𝐞𝐫𝐞 𝒓𝒂𝒏𝒅 𝝐(𝟎, 𝟏) 

end     

Where 𝒙𝒔𝒕𝒅 and 𝒙𝒎𝒆𝒂𝒏 are the search space limits for the fitness function, I is a random 

number which is equal to 1 or 2. 𝑭𝑷 is its new objective function value, 𝒇(𝒙). is the initial 

objective function value 

𝒗𝒊𝒋
𝒕+𝟏 =  {

𝒗𝒔𝒕𝒅, 𝒊𝒇𝒗𝒊𝒋
𝒕+𝟏 > 𝒗𝒔𝒕𝒅

−𝒗𝒔𝒕𝒅,        𝒊𝒇𝒗𝒊𝒋
𝒕+𝟏 < −𝒗𝒔𝒕𝒅

 

                                    𝒙𝒊𝒋
𝑷 = 𝒙𝒊𝒋

𝒕 + 𝑹. (𝟏 −
𝒕

𝑻
) . (𝟐. 𝒓𝒂𝒏𝒅 − 𝟏). 𝒙𝒊𝒋

𝒕 

Where 𝒙𝒊𝒋
𝑷 is the current status position of the ith pelican in the jth dimension based on 

pelican exploitation phase, R is a constant, which is equl to 0.2, 𝑹. (𝟏 −
𝒕

𝑻
) is the 

neighbourhood radius of 𝒙𝒊𝒋
𝒕 while, 𝑡 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑒𝑟, and 𝑇 =

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. 

𝒗𝒊𝒋
𝒕+𝟏 = 𝒈 ∗ 𝒗𝒊𝒋

𝒕 + 𝑎1𝒆−𝜷𝒓𝒑
𝟐
[𝒑𝒃𝒆𝒔𝒕𝒊𝒋

. − 𝒙𝒊𝒋
𝑷] + 𝑎2𝒆−𝜷𝒓𝒈

𝟐
[𝒈𝒃𝒆𝒔𝒕𝒋

. − 𝒙𝒊𝒋
𝑷] 

Where 

𝜷 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑙𝑖𝑚𝑖𝑡 𝑎 𝑚𝑎𝑦𝑓𝑙𝑦’𝑠 𝑣𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟𝑠
, 𝑟𝑝is the Cartesian distance between 𝒙𝒊 and 𝒑𝒃𝒆𝒔𝒕𝒊𝒋

. , and 𝒓𝒈
.  is the Cartesian distance between 

𝒙𝒊and 𝒈𝒃𝒆𝒔𝒕. The distances are calculated as: 

http://www.iiardjournals.org/
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‖𝒙𝒊 − 𝑿𝒊‖ = √∑(𝒙𝒊𝒋 − 𝑿𝒊𝒋)𝟐

𝒏

𝒋=𝟏

 

Where 𝒙𝒊𝒋 is the jth element of mayfly i and 𝑿𝒊𝒋 corresponds to 𝒑𝒃𝒆𝒔𝒕𝒊𝒋
. or𝒈𝒃𝒆𝒔𝒕. 

𝒙𝒊
𝒕+𝟏 = 𝒙𝒊

𝒕 + 𝒗𝒊𝒋
𝒕+𝟏 

With 𝒙𝒊
𝟎~ 𝑼(𝑥𝑚𝑒𝑎𝑛, 𝑥𝑠𝑡𝑑)  male mayfly =  𝒚𝒊

𝒕+𝟏 = 𝒚𝒊
𝒕 + 𝒗𝒊𝒋

𝒕+𝟏 

With 𝒚𝒊
𝟎~ 𝑼(𝑦𝑚𝑒𝑎𝑛, 𝑦𝑠𝑡𝑑)   female mayfly 

Using roulette wheel selection 𝒑𝒊 

𝒑𝒊  =  𝒓 ≤  
𝒇(𝒙𝒊

𝒕) 

∑ 𝒇(𝒙𝒊
𝒕) 𝑵

𝒊=𝟏

  

 

𝒗𝒊𝒋
𝒕+𝟏 = {

𝒗𝒊𝒋
𝒕 + 𝑎2𝒆−𝜷𝒓𝒎𝒇

𝟐 (𝒙𝒊𝒋
𝒕−𝒚𝒊𝒋

𝒕) 𝒊𝒇 (𝑦𝑖) > 𝑓(𝑥𝑖)

𝒗𝒊𝒋
𝒕 + 𝒇𝒍 ∗ 𝒑𝒊 𝒊𝒇(𝑦𝑖) ≤ 𝑓(𝑥𝑖)

 

 

Where 𝒗𝒊𝒋
𝒕 = is the velocity of female mayfly 𝒊 in dimension 𝑗 = 1, 2…, at time step 𝑡, 

 𝒚𝒊𝒋
𝒕 = the position of female mayfly 𝒊 in dimension 𝒋 at time step 𝒕,  𝑎2 = positive attraction 

constant and 𝜷 =  fixed visibility coefficient, while 𝑟𝑚𝑓 = Cartesian distance between male 

and female mayflies, estimated using: 

‖𝒙𝒊 − 𝑿𝒊‖ = √∑(𝒙𝒊𝒋 − 𝑿𝒊𝒋)𝟐

𝒏

𝒋=𝟏

 

Finally, 𝒇𝒍 = random walk coefficient, used when a female is not attracted by a male, so it 

flies deterministically by roulette wheel selection and 𝑟 = random value in the range of [-1, 1]. 

Step 7: Compute Solutions:    𝒇(𝒙) = 𝒇(𝒙𝒊
𝒕+𝟏) 

where 𝒇: 𝑹𝒏 → 𝑹 is the objective function which evaluates the quality of a solution 

Step 8: Mate the mayflies and Compute offspring 

𝒐𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈𝟏 = 𝑳 ∗ 𝒎𝒂𝒍𝒆 + (𝟏 − 𝑳) ∗ 𝒇𝒆𝒎𝒂𝒍𝒆 

𝒐𝒇𝒇𝒔𝒑𝒓𝒊𝒏𝒈𝟐 = 𝑳 ∗ 𝒎𝒂𝒍𝒆 + (𝟏 − 𝑳) ∗ 𝒎𝒂𝒍𝒆 

where 𝒎𝒂𝒍𝒆 and 𝒇𝒆𝒎𝒂𝒍𝒆 are the male and female parents respectively, and 𝐿 = random value 

in the scope of specific range. Offspring’s early velocities are put to be zero 

Step 9:  Modify 𝑷𝒃𝒆𝒔𝒕 of population using: 

𝒑𝒃𝒆𝒔𝒕𝒊
. = {

𝒙𝒊
𝒕+𝟏, 𝒊𝒇𝒇(𝒙𝒊

𝒕+𝟏) > 𝒇(𝒑𝒃𝒆𝒔𝒕𝒊
. ) 

𝒊𝒔𝒌𝒆𝒑𝒕𝒕𝒉𝒆𝒔𝒂𝒎𝒆, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

Step 10: Modify 𝑮𝒃𝒆𝒔𝒕 of population using: 

                    The  𝒈𝒃𝒆𝒔𝒕 position at 𝑡𝑖𝑚𝑒 =  𝑠𝑡𝑒𝑝 𝑡, is defined as 

𝒈𝒃𝒆𝒔𝒕 ∈ {𝒑𝒃𝒆𝒔𝒕𝟏, 𝒑𝒃𝒆𝒔𝒕𝟐, 𝒑𝒃𝒆𝒔𝒕3, 𝒑𝒃𝒆𝒔𝒕𝟒 … , 𝒑𝒃𝒆𝒔𝒕𝑵|𝒇(𝒄𝒃𝒆𝒔𝒕)}
= 𝐦𝐢𝐧 {{𝒇(𝒑𝒃𝒆𝒔𝒕𝟏), 𝒇(𝒑𝒃𝒆𝒔𝒕𝟐), … , 𝒇(𝒑𝒃𝒆𝒔𝒕𝑵)|} 

Where 𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑒 𝑚𝑎𝑦𝑓𝑙𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑤𝑎𝑟𝑚,  
Step 11: If t< 𝑴𝒂𝒙𝒊𝒕𝒆𝒓 then t= 𝒕 + 𝟏 and GOTO step 1 else GOTO step l2 

http://www.iiardjournals.org/
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Step 12: Output: optimum parameters of CNN are selected solution as 𝑮𝒃𝒆𝒔𝒕𝒃𝑫. 

𝑮𝒃𝒆𝒔𝒕𝒃𝑫 =  𝑥𝑏 

     

 

3.1 The optimization of hyper-parameters 

PMA algorithm is adopted in the CNN architecture model’s classification section as 

optimization technique in the batch size and dropout-layer section. The hyper-parameters of CNN 

optimized by PMA are: numbers of convolutional layers, size of the filters in each layer, the 

number of filters, and the batch size. Figure 1 showed the block diagram of optimization process 

of the CNN-PMA model. Each mayfly acted as a configuration of CNN with its hyper parameters. 

The general methodology of CNN-PMA is shown in Figure 2 with the flowchart of CNN-PMA, 

as the “training and optimization” block is the most important part of the whole process, where the 

CNN was initialized to integrate the parameter optimization by applying the PMA algorithm. In 

this process, the PMA was initialized in accordance with parameter given for the execution in 

Algorithm 1 and this generated males and females’ mayflies. Each mayfly is a likely solution and 

its location has parameters to be optimized, hence, a complete CNN training.  

Training process begins with an iterative cycle and ends with evaluation of all the mayflies 

generated using the PMA for each generation. The database size, size of mayflies, number of 

iterations of the PMA as well as number of males and females’ mayflies in each iteration determine 

the computational cost of the model. That is, if the PMA is executed with 10 male and female 

mayflies and 10 iterations, the training of CNN is carried out in 100 times. The step by step 

algorithm for optimization of CNN using the PMA algorithm are clarified in Figure 2. 

 

http://www.iiardjournals.org/
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  Figure 1 Block Diagram of the Proposed Hybridized CNN-PMA Model 

3.2 Application CNN-PMA as Fault Detection and Classification Models 

CNN-PMA model is designed and simulated for detection and classification of faults in 

330kV electrical line in SWN, its flow diagram is shown in Figure 3 and the architectural drawing 

is shown in Figure 4. The encoded Gramian angular field (GAF) images of the three voltages and 

currents for 330kV lines is fed to the models of CNN- PMA. An interactive GUI application is 

developed with electrical faults on SWN 330kV network data. The GUI is designed using deep 

learning and optimization toolboxes in MATLAB 2020a. 
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Figure 2 Flowchart of Optimization of Convolutional Neural Network with Pelican 

Mayfly Algorithm (CNN-PMA) 

Start 

No of layers, No of 

filters, Batch Size of 

CNN, PMA parameter 
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CNN training and 

validation 

Compute the objective function values of male 

and female mayflies 

Locate the 𝑃𝑏𝑒𝑠𝑡 of each male and female and determine 

gravity coefficient 

Update velocities and solution of males and female using Pelican 
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Update Pbest and Gbest of population 
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No 
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Figure 3 Flow Diagram of Implementation of CNN-PMA Model 
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Figure 4 Architecture of the Proposed CNN-PMA Model for SWN 330kV Network 
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4. RESULTS AND DISCUSSION 

 Results obtained from optimization of CNN using MA and PMA algorithms are discussed 

in this section. The developed algorithm was tested and evaluated using the following performance 

metrics: MAPE, MSE, RMSE, Corr-Coeff., SNR and PSNR. Tables 2 and 3 showed the 

optimization results of MA on CNN and PMA on CNN at 30 iterations with different numbers of 

layers, filters, filter size and batch size. The best recognition rates were achieved at 99.27% 

(iteration: 6) and 99.53% (iteration: 30) for MA and PMA respectively. In addition, Figures 5 and 

6 showed graphical representation of CNN Hyper-parameter selection using MA and PMA.  Based 

on the results in Table 4, which is graphically shown in Figure 7, comparing MA and PMA 

performances, PMA achieved the optimum CNN architecture as follows: 1convolutional layer, 

128 number of filters per layer and filter size of 6 x 6, the batch size is 256 which guaranteed 

convergence of CNN-PMA to global optimal. Furthermore, Tables 5(a, b and c), showed the 

results obtained by CNN, CNN-MA and CNN-PMA respectively at different threshold with 

respect to the performance metrics, their graphical representation were displayed in Figures 8(a, b 

and c) respectively.  

The results obtained from Table 5(c) at test sample percentage of 20% clearly revealed that 

CNN-PMA had the least MAPE of 8.576531, least MSE of 0.011512, least RMSE of 0.107293, 

highest SNR of 8.813529 and highest PSNR of 8.930958. These implied that PMA has higher 

accuracy and efficiency compared to CNN and CNN-MA. Hence, CNN-PMA has better 

performance compared to CNN and CNN-MA with accuracy of 99.53%. 

4.1 CNN-PMA as Fault Detection model 

To perform fault detection, the Transmission line (TL) configuration comprises two generating 

units and three RLC loads was used. Irregular flow of voltage and current are termed as the TL 

fault. Likewise, all forms of faults were activated based on a set program using a fault generator 

block. Fault detection was performed with TL as shown by confusion matrix in Figure 9(a), (b) 

and (c) for CNN, CNN-MA and CNN-PMA respectively. Two classes: faulty and no-faulty were 

considered. Based on these confusion matrixes, it is shown that CNN-PMA model detected 

electrical fault accurately. Table 6 showed summary of performance evaluation of CNN, CNN-

MA and CNN-PMA as fault detection model with the use of 80% of augmented (8832) data as 

testing data. 

 

Table 2: Selection of CNN optimal parameters using MA optimization technique  

S/N Number of 

Layers 

Number of 

Filters 

Filter Size Batch 

Size 

Recognition 

Rate (%) 

1 3 104 3 236 97.31 

2 3 109 3 136 98.47 

3 3 112 5 150 96.51 

4 1 83 6 149 98.15 

5 1 57 7 238 95.55 

6 1 128 6 155 99.27 

7 3 128 6 203 97.81 
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International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 98 

8 2 128 5 228 95.62 

9 3 128 5 256 95.98 

10 1 128 6 256 95.38 

11 3 128 6 256 96.78 

12 3 128 5 256 98.87 

13 2 128 3 256 99.15 

14 1 128 5 256 98.60 

15 2 128 3 256 97.96 

16 1 128 6 256 96.42 

17 2 128 3 256 98.76 

18 3 128 5 256 96.02 

19 2 128 6 256 96.74 

20 3 128 4 256 98.57 

21 3 128 7 256 98.70 

22 2 128 7 256 96.95 

23 2 128 3 256 98.19 

24 3 128 7 256 98.33 

25 3 128 3 256 96.09 

26 1 128 6 256 95.28 

27 2 128 6 256 96.44 

28 1 128 5 256 95.69 

29 3 128 7 256 98.73 

30 2 128 3 256 97.08 
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    Figure 5: CNN Optimal Hyper-parameter selection process using MA 
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 Table 3: Selection of CNN optimal parameters using PMA optimization technique  

S/N Number of 

Layers 

Number of 

Filters 

Filter Size Batch 

Size 

Recognition 

Rate (%) 

1 3 58 7 230 95.31 

2 1 67 3 196 99.16 

3 1 97 7 137 95.27 

4 2 60 4 115 95.69 

5 1 61 7 230 95.50 

6 1 128 6 107 98.10 

7 2 128 7 109 98.12 

8 2 128 4 221 98.60 

9 3 128 6 256 95.86 

10 3 128 5 256 97.30 

11 3 128 4 256 95.95 

12 3 128 7 256 96.00 

13 2 128 7 256 95.90 

14 1 128 3 256 96.50 

15 3 128 7 256 95.39 

16 2 128 3 256 98.49 

17 3 128 5 256 97.42 

18 2 128 7 256 98.39 

19 2 128 4 256 96.70 

20 2 128 7 256 98.22 

21 2 128 3 256 98.26 

22 1 128 7 256 95.78 

23 1 128 4 256 95.66 

24 1 128 7 256 95.79 

25 1 128 5 256 95.84 

26 3 128 3 256 98.17 

27 1 128 4 256 95.87 

28 2 128 7 256 97.66 

29 2 128 3 256 95.43 

     30 1 128 6 256 99.53 
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  Figure 6: CNN Optimal Hyper-parameter selection process using PMA 
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Table 4: Comparison of Selected best Optimal Hyper-parameters of CNN using MA and PMA 

Epoch No. 

Layers 

No. 

Filters 

Filter 

Size 

Batch 

Size 

Recognition 

Rate (%) 

Optimization 

Methods 

6 1 128 6 155 99.26983 MA 

30 1 128 6 256 99.53374 PMA 

 

 

Figure 7: Comparison of Selected best Optimal Hyper-parameters of CNN using MA and PMA 

 

Table 5a: Validation of CNN using MAPE, MSE, RMSE, CorrCoeff, SNR and PSNR 

MAPE MSE RMSE CorrCoeff SNR PSNR Technique Sample 

Percentage 

18.80112 1.171857 1.082524 0.008102 8.740738 8.853678 CNN 0.4 

18.71146 1.161948 1.077937 0.019925 8.788822 8.890559 CNN 0.3 

18.58248 1.155719 1.075044 0.044140 8.791979 8.913902 CNN 0.2 
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Table 5b: Validation of CNN-MA using MAPE, MSE, RMSE, CorrCoeff, SNR and PSNR 

MAPE MSE RMSE CorrCoeff SNR PSNR Technique Sample 

Percentage 

12.43761 0.046195 0.21493 0.033427 8.815359 8.917095 MA-CNN 0.4 

12.50786 0.046357 0.215307 0.019991 8.810555 8.901861 MA-CNN 0.3 

12.51416 0.046319 0.215219 0.026586 8.812605 8.905399 MA-CNN 0.2 

 

Table 5c: Validation of CNN-PMA using MAPE, MSE, RMSE, CorrCoeff, SNR and PSNR  

MAPE MSE RMSE CorrCoeff SNR PSNR Technique Sample 

Percentage 

8.651305 0.011662 0.10799 0.013993 8.76962 8.874714 PMA-CNN 0.4 

8.682522 0.01168 0.108073 0.005817 8.770779 8.868042 PMA-CNN 0.3 

8.576531 0.011512 0.107293 0.046538 8.813529 8.930958 PMA-CNN 0.2 

 

(a)  

  

(b) 
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1 2 3
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(c) 

  

  Figure 8: Evaluation parameters of (a) CNN, (b) CNN-MA, (c) CNN-PMA.  

(a)         (b) 

    

  

   (c) 

    
Figure 9 Confusion Matrix for fault detection: (a) CNN, (b) CNN-MA and (c) CNN-PMA  

Table 6  Summary of Evaluation Standard for fault detection 

0
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1 2 3
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SNR PSNR Technique SamplePerc

http://www.iiardjournals.org/


 

 

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 105 

 Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

No-

Fault 

Fault Mis-

match 

Count 

CNN 95.70 99.59 70.80 82.76 730 6032 304 7066 

CNN-MA 98.09 99.86 84.86 91.75 751 6180 135 7066 

CNN-PMA 99.94 100 99.51 99.75 812 6250 4 7066 

 

4.2 CNN-PMA as Fault Classification model 

A total of 3541fault data of SWN transmission lines were collected for the period of twenty-three 

years. K-fold cross validation is used for training and for testing where K=10. Fault classification 

was performed on the training data using CNN, CNN-MA and CNN-PMA. Figures 10, 11 and 12 

represented corresponding confusion matrixes for CNN, CNN-MA and CNN-PMA respectively. 

Table 7 presented different performance evaluation criteria for CNN, CNN-MA and CNN-PMA. 

Considering Table 7, CNN-PMA results showed a better performance compared to CNN and 

CNN-MA in term of accuracy, precision, recall and F1-score. Hence, CNN-PMA displayed 

excellent performance in classification of electrical faults in SWN electrical network. 

  
 Figure 10: Confusion Matrix for fault classification using CNN model in 330kV network 
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 Figure 11: Confusion Matrix for fault classification using CNN-MA in 330kV network 

 

  
 Figure 12: Confusion Matrix for fault classification using CNN-PMA in 330kV network 
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Table 7: Summary of Evaluation Standard for Fault Classification in 330kV network 

 Accuracy Precision Recall F-1 score Mis-

match 

Count 

CNN 

                 LG 

                 LL 

                 LLG 

                 LLL  

Average value 

 

97.83 

97.83 

97.83 

97.83 

97.83 

 

96.54 

96.93 

98.23 

98.44 

97.54 

 

98.22 

98.63 

98.93 

98.84 

98.66 

 

97.34 

97.71 

98.57 

98.63 

98.06 

 

1 

2 

3 

3 

 

 

849 

699 

737 

548 

2833 

CNN-MA 

                 LG 

                 LL 

                 LLG 

                 LLL 

Average value 

 

98.80 

98.72 

98.72 

98.72 

98.72 

 

99.54 

99.34 

98.44 

98.63 

98.74 

 

99.26 

98.57 

99.56 

98.56 

98.99 

 

98.94 

98.94 

99.13 

98.86 

98.97 

 

0 

1 

2 

2 

 

849 

699 

737 

548 

2833 

CNN-PMA 

                 LG 

                 LL 

                 LLG 

                 LLL 

Average value 

 

99.96 

99.96 

99.96 

99.96 

99.96 

 

99.73 

100 

100 

100 

99.93 

 

100 

99.86 

100 

100 

99.97 

 

99.92 

99.93 

100 

100 

99.96 

 

0 

0 

1 

1 

 

849 

699 

737 

548 

2833 

 

  

4.3 Comparison of CNN-PMA with other Methods  

 To show the superiority of CNN-PMA model, few existing methods for fault detection and 

classification were compared as shown in Table 8.: Amiruddin et al. (2018) and Leh et al. (2020) 

used ANN model to detect and classify electrical faults. Whereas Goni et al. (2023) used ELM 

model to detect and classify electrical fault in power system. Guo et al. (2019) and Moradzadeh 

(2022) employed HTT-CNN and CNN-LSTM models respectively for detection and classification 

of electrical faults. Their percentage accuracies when compared showed that CNN-PMA 

performed better in fault detection and classification than others. In addition, others had their 

number of layers between three and nine whereas CNN-PMA has one layer, this made it faster in 

operation when compared with others. Moreover, CNN-PMA has high learning rate as a result of 

its high batch size of 256 when compared with others.  

Table 8: Comparison of CNN-PMA with other faults diagnosis models in transmission          

lines  
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Author(s) 

 

Algorithm Data (Training and 

Testing) 

No. of 

Class 

Considered 

No. of 

Layers 

Accuracy 

(%) 

Amiruddin et 

al. (2018) 

ANN Detection (190:41) 2 2 78 

Fahim et al. 

(2019) 

ANN Detection (44) 

Classification (208) 

 

3 

 

3 

 

84.40 

 

 

Guo et al. 

(2019) 

HTT-CNN Detection (1672) 

Classification 

(1752) 

 

2 

10 

 

 

6 

 

99.92 

Leh et al. 

(2020) 

ANN Not stated 11 

 

 

3 70.00 

Moradzadeh 

(2022) 

CNN-

LSTM 

 

Not stated  

11 

 

9 

 

98.60 

Goni et al. 

(2023) 

 

ELM 

Detection 

(1000:4001) 

Classification 

(9909: 1102) 

2 

 

 

11 

 

 

 

2 

 

99.09 

 

 

 

 

CNN 

Detection (8832: 

7066) 

Classification 

(3541: 2833) 

 

2 

 

 

4 

 

 

3 

 

 

97.83 

  

CNN-MA 

Detection (8832: 

7066) 

Classification 

(3541: 2833) 

 

2 

 

 

4 

 

 

1 

 

 

98.72 

 

Proposed 

 

CNN-PMA 

Detection (8832: 

7066) 

Classification 

(3541: 2833)  

2 

 

 

4 

 

 

1 

 

99.96 

 

5. CONCLUSION 

 This work has successfully carried out hybridization of MA and POA. PMA was developed 

by applying Pelican Exploration Model to model the attraction process as a deterministic process 
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in order to assist the standard MA. Pelican Exploitation Model was applied to establish a balance 

between exploration and exploitation process in standard MA. The PMA was applied to detect the 

optimal hyper-parameters of CNN, such as: number of layers, filter size used in each convolutional 

layer, number of filters and the batch size. Developed CNN-PMA was simulated using deep 

learning and optimization tools boxes of MATLAB 2022a and in turn used to detect and classify 

electrical faults on SWN electrical network. The proposed model detected and classified electrical 

fault accurately and timely compared to standard CNN, CNN-MA and few other existing models. 

The results obtained were examined using MAPE, RMSE, CorrCoeff, PSNR, MSE, SNR and 

confusion matrix as performance metrics. 

 

REFERENCES  

Abedinia, O., Amjady, N. and Ghasemi, A. (2016). A New Metaheuristic Algorithm Based on 

Shark Smell Optimization. Complexity, 21(5):97-116.  

Afrasiabi, M., Mohammadi, M., Rastegar, M. and Kargarian, A. (2019). Probabilistic Deep Neural 

Network Price Forecasting Based on Residential Load and Wind Speed Predictions, 

IET Renewable Power Generation, 13(11):1840-1848.  

Allan, J. D., and Flecker, A. S. (1989). The Mating Biology of a Mass-Swarming Mayfly. Animal 

Behavior, 37, 361-374.  

Amiruddin, A. A. A. M., Zabiri, H., Taqvi, S. A. A. and Tufa, L.D. (2020). Neural Network  

 Applications in Fault Diagnosis and Detection: An Overview of Implementations in 

Engineering Related Systems. Neural Computer Applications 32 (2):447-472. 

Anderson, J. G. (1991). Foraging Behavior of the American White Pelican (Pelecanusery- 

throrhyncos) in Western Nevada. Colonial Water Birds, 14, 166-172. 

Askarzadeh, A. (2016). A Novel Metaheuristic Method for Solving Constrained Engineering 

Optimization Problems: Crow Search Algorithm. Computers and Structures, 169, 1-

12.  

Baykasoglu, A. and Akpinar, S. (2017). Weighted Superposition Attraction (WSA): A Swarm 

Intelligence Algorithm for Optimization Problems-Part1: Unconstrained Optimization. 

Applied Soft Computing, 56, 520-540. 

Bracale, A., Caramia, P., Carpinelli, G. and Fazio, A.R.D. (2017) Modeling the Three-phase 

Short Circuit Contribution of Photovoltaic Systems in Balanced Power Systems. 

Electrical Power Energy Systems. 93, 204-215.   

Bukhari, S. B. A., Kim, C., Mehmood, K. K., Haider, R. and Zaman, M. S. U. (2020). 

Convolutional Neural Network-Based Intelligent Protection Strategy for Micro Grids, 

IET Generation Transmission. Distribution, 14(7):1177-1185.  

Chen, K., Hu, J., and He, J. (2018). Detection and Classification of Transmission Line Faults Based 

on Unsupervised Feature Learning and Convolutional Sparse Auto Encoder. IEEE 

Transaction. Smart Grid, 9(3):1748-1758.  

http://www.iiardjournals.org/


 

 

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 110 

Dhiman, G. and Kumar, V. (2017). Spotted Hyena Optimizer: A Novel Bio-Inspired Based 

Metaheuristic Technique for Engineering Applications. Advances in Engineering 

Software, 114, 48-70.  

Fahim, S. R., Sarker, Y., Islam, O. K., Sarker, S. K., Ishraque, M. F. and Das, S. K. (2019). An 

Intelligent Approach of Fault Classification and Localization of a Power Transmission 

Line. 2019 IEEE International Conference Power, Electrical Electronic Industrial 

Applications PEEIACON, 53-56 

Fausto, F., Cuevas, E., Valdivia, A. and González, A. (2017). A Global Optimization Algorithm 

Inspired in the Behavior of Selfish Herds. Biosystems, 160, 39-55.  

Geem, Z. W. and Kim, J. H. (2001). A New Heuristic Optimization Algorithm: Harmony Search. 

Research Gate, 3, 34-47. 

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. 

Addison Wesley. 1-6.  

Goni, M. F., Nahiduzzaman, M., Anower, M.S., Rahman, M.M., Islam, M.R., Ahsan, M., Haider, 

J. and Shahjalal, M. (2023). Fast and Accurate Fault Detection and Classification in 

Transmission Lines using Extreme Learning Machine. Advances in Electrical 

Engineering, Electronics and Energy, 3(100107):1-12.  

Guo, M. F., Yang, N. C. and Chen, W. F. (2019). Deep Learning-based Fault Classification using 

Hilbert–Huang Transform and Convolutional Neural Network in Power Distribution  

 Systems. IEEE Sensors, 19(16):6905-6913. 

Hatata, A. Y., Essa, M. A. and Sedhom, B. E. (2022). Adaptive Protection Scheme for FREEDM 

Microgrid Based on Convolutional Neural Network and Gorilla Troops Optimization 

Technique. IEEE Access, 10, 55583-55595.  

Holland, J. H. (1960). Genetic Algorithms: Compare Programs that ‘Evolve’ in Ways the 

Resemble Natural Selection can Solve Complex Problems even their Creators do not 

fully understand. http//www.econ.lastate.edu/tesfatsi/Holland.G.AIntro. htm. 

07/02/2023. 

Husseinzadeh-Kashan, A., Tavakkoli-Moghaddam, R., and Gen, M. (2019). Find-Fix-Finish-

xploit-Analyze (F3EA) Meta-heuristic Algorithm: An Effective Algorithm with New 

Evolutionary Operators for Global Optimization. Computers and Industrial 

Engineering, 128, 192-218. 

Illias, H. A., Chai, X. R., Abu Bakar, A. H., Mokhlis, H. (2015). Transformer Incipient Fault 

Prediction Using Combined Artificial Neural Network and Various Particle Swarm 

Optimisation Techniques. Plosone, 10(6):1-16. 

Jahani, E. and Chizari, M. (2018). Tackling Global Optimization Problems with a Novel 

Algorithm: Mouth Brooding Fish Algorithm. Applied Soft Computing, 62, 987-1002. 

http://www.iiardjournals.org/


 

 

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 111 

Jing, L., Zhao, M., Li, P. and Xu, X. (2017). A Convolutional Neural Network-Based Feature 

Learning and Fault Diagnosis Method for the Condition Monitoring of Gearbox. 

Measurement, 111, 1-10. 

Kaveh, A., and Dadras, A. (2017). A Novel Meta-Heuristic Optimization Algorithm: Thermal 

Exchange Optimization. Advances in Engineering Software, 110, 69-84. 

Kennedy, J. and Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN’95- 

International Conference on Neural Networks, 1942-1948.  

Leh, N. A. M., Zain, F. M., Muhammad, Z., Abd Hamid, S. and Rosli, A. D. (2020). Fault 

Detection Method using ANN for Power Transmission Line, in: 2020 10th IEEE 

International Conference on Control System, Computing and Engineering (ICCSCE), 

79-84. 

Li, M. D., Zhao, H., Weng, X. W., and Han, T. (2016). A Novel Nature-Inspired Algorithm for 

Optimization: Virus Colony Search. Advances in Engineering Software, 92, 65-88. 

Lu, J., Ye, Y., Xu, X. and Li, Q. (2019). Application Research of Convolution Neural Network in 

Image Classification of Icing Monitoring in Power Grid. EURASIP Journal on Image 

and Video Processing, 49, 1-11.  

Marchant, S. (1990). Handbook of Australian, New Zealand and Antarctic Birds: Australian 

Pelican to Ducks; Oxford University Press: Melbourne, Australia. 

Mehrabian, A. R. and Lucas, C. (2006). A Novel Numerical Optimization Algorithm Inspired from 

Weed Colonization. Ecological Informatics, 1(4):355–366. 

Mirjalili, S. and Lewis, A. (2016). The Whale Optimization Algorithm. Advances in Engineering  

 Software, 95(C):51-67.  

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., and Mirjalili, S. M. (2017). 

Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems. 

Advances in Engineering Software, 114, 163-191.  

Mirjalili, S., Mirjalili, S. M., and Hatamlou, A. (2016). Multi-Verse Optimizer: A Nature Inspired 

Algorithm for Global Optimization. Neural Computing and Applications, 27(2):495-

513. 

Moradzadeh, A., Teimourzadeh, H., Mohammadi-Ivatloo, B. and Pourhossein, K. (2022). Hybrid 

CNN-LSTM Approaches for Identification of Type and Locations of Transmission 

Line Faults, International Journal of Electrical Power Energy System, 

135(107563):117-131. 

Mozo, A., Ordozgoiti, B. and GoÂmez-Canaval, S. (2018). Forecasting Short-Term Data Center 

Network Traffic Load with Convolutional Neural Networks. PLOS ONE, 13(2):1-31. 

http://www.iiardjournals.org/


 

 

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 112 

Nematollahi, A.F., Rahiminejad, A. and Vahidi, B. (2017). A Novel Physical Based Meta-

Heuristic Optimization Method known as Lightning Attachment Procedure 

Optimization. Applied Soft Computing Journal, 59, 596-621.  

Ogundoyin, S. O. and Kamil, I. A. (2021). Optimization Techniques and Applications in Fog 

Computing: An Exhaustive Survey. Elsevier: Swarm and Evolutionary Computation, 

66(100937):1-55. 

Pakzad-Moghaddam, S. H., Mina, H., and Mostafazadeh, P. (2019). A Novel Optimization Booster 

Algorithm. Computers and Industrial Engineering, 136, 591-613. 

Pan, C., Lu, M., Biao Xu, B. and Gao, H. (2019). An Improved CNN Model for Within Project 

Software Defect Prediction. Applied Sciences. 9(2138):1-27. 

Peckarsky, B. L., McIntosh, A. R., Caudill, C. C. and Dahl, J. (2002). Swarming and Mating 

Behavior of a Mayfly Baetisbicaudatus suggest Stabilizing Selection for Male Body 

Size. Behavioral Ecology and Sociobiology, 51(6):530-537.  

Perrins, C. M., Middleton, A. L. (1985). The Encyclopedia of Birds; Guild Publishing: London, 

UK, 53-54. 

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S. and Zaidi, M. (2006). The Bees 

Algorithm-A Novel Tool for Complex Optimization Problems. Intelligent Production 

Machines and Systems. Proceedings of 2nd IPROMS Virtual International Conference 

3-14 July 2006, 454-459.  

Qi, X., Zhu, Y. and Zhang, H. (2017). A New Meta-Heuristic Butterfly-Inspired Algorithm. 

Journal of Computational Science, 23, 226-239. 

Samet, H., Ketabipour, S., Afrasiabi, S., Afrasiabi, M. and Mohammadi, M. (2021). Prediction of 

Wind Farm Reactive Power Fast Variations by Adaptive One-Dimensional 

Convolutional Neural Network, Computer Electronics Engineering, 96(107480):1-16. 

Saremi, S., Mirjalili, S. and Lewis, A. (2017). Grasshopper Optimization Algorithm: Theory and  

 Application. Advances in Engineering Software, 105, 30-47.  

Spieth, H. T. (1940). Studies on the Biology of the Ephemeroptera II. The Nuptial Flight. Journal 

of the New York Entomological Society, 48(4):379-390. 

Storn, R., and Price, K. (1997). Differential Evolution: A Simple and Efficient Heuristic for Global 

Optimization over Continuous Spaces. Journal of Global Optimization, 11, 341-359. 

Tabari, A. and Ahmad, A. (2017). A New Optimization Method: Electro-Search Algorithm. 

Computers and Chemical Engineering, 103, 1-11. 

Tang, S., Yuan, S. and Zhu, Y. (2020). Data Preprocessing Techniques in Convolutional Neural 

Network Based on Fault Diagnosis Towards Rotating Machinery. IEEE Access, 8, 

149487-149496. 

http://www.iiardjournals.org/


 

 

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848 

P-ISSN 2695-2149 Vol 10. No. 10 2024 www.iiardjournals.org Online Version 

 

 

 

 IIARD – International Institute of Academic Research and Development 
 

Page 113 

Trojovský, P. and Dehghani, M. (2022). Pelican Optimization Algorithm: A Novel Nature-

Inspired Algorithm for Engineering Applications. Sensors, 22(855):1-31.  

Uymaz, S. A., Tezel, G., and Yel, E. (2015). Artificial Algae Algorithm (AAA) for Non-linear 

Global Optimization. Applied Soft Computing, 31, 153-171. 

Wolpert, D. H. and Macready, W.G. (1997). No Free Lunch Theorems for Optimization. IEEE 

Transactions Evolutionary Computation.1, 67-82. 

Yang, X. S. (2008). Nature-inspired Metaheuristic Algorithms. Luniver Press. 45-53. 

Yang, X. S. and Karamanoglu, M. (2016). Swarm Intelligence and Bio-Inspired Computation. 

Elsevier, 41-58. 

Yang, X. S. (2009). Firefly Algorithms for Multimodal Optimization. Springer (Edition: 

Stochastic Algorithms Foundations and Applications, 169-178.  

Yang, X. S. and He, X. (2013). Firefly Algorithm: Recent Advances and Applications. 

International Journal of Swarm Intelligence, 1, 36-50. 

Yong, W., Tao, W., Cheng-Zhi, Z. and Hua-Juan, H. (2016). A New Stochastic Optimization 

Approach-Dolphin Swarm Optimization Algorithm. International Journal of 

Computational Intelligence and Applications, 15(2):16500-16511.  

Zervoudakis, K. and Tsafarakis, S. A. (2020). Mayfly Optimization Algorithm. Computers and 

Industrial Engineering, 1-80. 

Zhao, C., Huang, X., Li, Y. and YousafIqbal, M. (2020). A Double-Channel Hybrid Deep Neural 

Network Based on CNN and BiLSTM for Remaining Useful Life Prediction. Sensors, 

20(7109)1-15. 

http://www.iiardjournals.org/

